Cofense Email Security

‘Read the Manual’ Bot Gives This Phishing Campaign a Promising Future

CISO Summary

Cofense IntelligenceTM has spotted a surgical phishing campaign whose targets could easily broaden, given the sophisticated development of its tactics. For now, it’s taking aim at financial departments in Russia and neighboring countries, using the Read the Manual (RTM) Bot to deliver a banking trojan.

Among other capabilities, the malware steals data from accounting software and harvests smart card information. The newest version uses The Onion Router (TOR) communication protocol, whose privacy and extra encryption are signs the threat actors could be serious about developing the banking trojan for future campaigns.

Technical controls can help combat this threat, for example, blocking connections to TOR nodes and inspecting network traffic for connections attempts. More proactively, educate end users on evolving phishing tactics.

Full Details

Cofense IntelligenceTM has analyzed a phishing campaign delivering a banking trojan and targeting Russia and neighboring countries. Read The Manual (RTM) Bot is created by a cyber group known by the same name. The RTM group is targeting the financial departments within different industry sectors. This modular banking trojan has many unique features, such as stealing data from accounting software and harvesting smart card information. This newest version uses The Onion Router (TOR) communication protocol. These campaigns are typically written in Cyrillic and use the Monthly Payment lure. Figure 1 shows an email associated with this campaign.

Image of a computer screen displaying Cofense's phishing simulation tool

Figure 1: An email associated with this phishing campaign

RTM Bot targets accounting software while initially scanning the drive of the endpoint. The scan looks for any items related to the Russian remote banking system and relays the information found to the C2 for further instructions. RTM Bot scours the web browser history, and can access currently opened tabs, looking for any banking URL patterns. After the initial scan, the banking trojan then gathers information, effectively fingerprinting the machine. Figure 2 shows the accounting software strings found in the memory of this sample.

Image of a person typing on a computer keyboard while looking at a Cofense report

Figure 2: Strings associated with accounting software

Some accounting software requires the use of a smart card to authenticate to the software and access data associated with it. RTM Bot attempts to locate these smart card readers by scanning the registry and attached devices. If a smart card is found, the banking trojan then interacts with the Winscard API function to harvest information. The harvested information is then held within the memory buffer until it is sent to the C2. Figure 3 shows some memory strings associated with the smart card search and API interaction.

Image of a person looking at a mobile phone displaying Cofense's dashboard

Figure 3: Memory strings associated with the smart card search and API interaction

Before attempting to exfiltrate the gathered information, the banking trojan will look up the host’s external IP address and add the value to its collection. It uses a GET request to the website hxxp://myip[.]ru/index_small[.]php to gather the external IP of the infected machine. Figure 4 shows the GET request.

Image of a person analyzing a Cofense phishing email report

Figure 4: The GET request for the external IP of the machine

Other values collected by RTM Bot during the fingerprinting of the machine include:

  • Username
  • Machine name
  • Logged on user privileges
  • OS version
  • Anti-virus installed
  • Time zone
  • Default language

Previous iterations of this malware used Blockchain Domain Name Services (BDNS) for its C2 infrastructure. The biggest change in the new version is the switch to using The Onion Router (TOR) communication protocol for its C2 infrastructure. Note that RTM Bot does not install a TOR client. Instead it uses the onion libraries, which are often called TOR SOCKS. By not installing a client onto the machine, RTM Bot minimizes its chances of being detected by anti-virus manipulating the Operating System (OS). Figure 5 shows memory strings associated with the TOR C2 infrastructure.

 Cofense logo

Figure 5: Memory strings associated with the TOR C2 infrastructure

Using the TOR protocol for communication helps threat operators in many ways. The first is that the communication is encrypted at the application layer of the OSI model, which adds an extra layer of encryption to the traffic. Another reason is the privacy that the TOR network affords the threat actors. This is done by passing the data through a network of relay points using layers of encryption. Each relay point decrypts a layer that reveals the next destination and routes the packet respectively. The relay point, however, does not know the next destination or the final destination the packet should reach. This routing scheme helps eliminate eavesdropping, because the router doesn’t know the end to end connections created, as well as the obfuscation by multiple layers of encryption.

RTM Bot has many of the common capabilities of banking trojans, including keylogging and screen captures. The malware can be pre-compiled with modules or it can download and execute the modules as instructed by the C2. The RTM cyber group focuses on financial departments within business in specific countries but can very easily shift its aim.

The newest version using the TOR communication protocol shows the group is actively developing this banking trojan for the future. Blocking connections to TOR nodes and inspecting network traffic for connection attempts will help mitigate the exfiltration of information. However, educating end users about phishing campaign threats and maintaining the threat knowledge base is the key to avoiding these threats.

To stay ahead of emerging phishing and malware trends, sign up for free Cofense Threat Alerts.

All third-party trademarks referenced by Cofense whether in logo form, name form or product form, or otherwise, remain the property of their respective holders, and use of these trademarks in no way indicates any relationship between Cofense and the holders of the trademarks.

Share This Article
Facebook
Twitter
LinkedIn

Search

We use our own and third-party cookies to enhance your experience. Read more about our cookie policy. By clicking ‘Accept,’ you acknowledge and consent to our use of all cookies on our website.